Is timber harvesting carbon neutral? And what about carbon fertilization?

Brent Sohngen

Modeling issues in forestry

- Emerging question about whether timber harvesting is carbon neutral.
 - "New" approach suggested by Peng et al. (2023)
- Some issues they raised
 - Economics doesn't matter because it's not even an economics problem
 - Economics is too complicated to model anyways.
 - Models include other things like carbon fertilization in their numbers.
 - The parameters of models are wrong
 - Models that capitalize future forests have only 1 response to higher demand \rightarrow new forests.
 - Existing studies have ignored carbon emissions after harvesting.
 - Comparing fluxes after harvest versus a no harvest/natural counterfactual is the right approach.
- Climate impacts
 - The role of carbon fertilization on carbon flux and management

Modeling issues in forestry

- Emerging question about whether timber harvesting is carbon neutral.
 - "New" approach suggested by Peng et al. (2023)
- Some issues they raised
 - Economics doesn't matter because it's not even an economics problem,
 - Economics too complicated to model anyways.
 - Models include other things like carbon fertilization in their numbers.
 - The parameters of models are wrong
 - Models that capitalize future forests have only 1 response to higher demand \rightarrow new forests.
 - Existing studies have ignored carbon emissions after harvesting.
 - Comparing fluxes after harvest versus a no harvest/natural counterfactual is the right approach.
- Climate impacts
 - The role of carbon fertilization on carbon flux and management

Comparison of harvested forest to set-aside forest. $C \ change = \int_{t=15}^{T} \left[SA\dot{C}(n) - Har\dot{C}(n) \right] dn$

t=15 t=0

Some concerns about this approach

- Ignores hundreds of years of sustained yield forestry where stocks can be maintained at different levels, MSY or Faustmann being two clearly different ones.
- Normative assumptions ignored. All forests are treated the same, even ones that were planted for the express purpose of cutting.
- Focused entirely on existing stock, not future stock.
- Ignores market interactions.

Peng et al. approach:

Standard Approach:

$$\dot{S}_i = -\sum_j H_{ijt} + G_{it}(S_{it}, Z_{it}) + g_{it} - \delta_{it}S_{it}$$

Normal Forest

from Sohngen and Sedjo (1996)

- Normal forest: forest with equal age classes of trees of some age
- Volume (m3/ha) =
 - exp(7.82 52.9/age)
- r=4%
- Faustmann age = 32
- MSY age = 50
- Area = 16 million ha

	25	32	50
Ann. Harv. Vol. (mill m ³)	192	238.3	276.6
Ann. Harv. Area	640,000	500,000	320,000

Forestry models have analyzed the effect of demand and other shocks

- Sohngen and Sedjo (1996)
- Demand shocks that increase consumption will reduce carbon and vice-versa.
- But, demand shocks that increase demand over time will increase stocks in optimal control models and reduce it in static models.

Keep in mind...

- Many forests are sustainable: 40-60% of the world's forests are derived from plantations that are sustainably managed.
- Many managed tropical systems are sustainable or could be
 - Malaysia, Guatemala, Costa Rica, Vietnam
- Some forests are not:
 - Old growth
 - Canada
 - Some tropical harvests
 - Deforestation supplies wood to markets, but isn't forestry

Other problems with Peng et al.

- Policy recommendation of "new approach" is that wood harvests are not treated as carbon neutral under any circumstance. In a world where carbon matters, this is like adding a tax on emissions:
 - Net price to producers will be lower initially (taxed), but over time the market price of wood could rise when supply is constrained.
 - Forest land value will be lower
 - There will be less land in forests
 - Favero et al. (2020); Li et al. (2021)
- Treats forests like a car, as simple emitting source

 $\dot{S}_i = -\sum_j H_{ijt} + G_{it}(S_{it}, Z_{it}) + g_{it} - \delta_{it}S_{it}$

Would we ever reduce harvests for carbon?

• Tax and Subsidy:
$$Max_t \frac{\left(PVe^{-rt} + \int_0^T P^C \alpha \dot{V}e^{-rn} dn - P^C (1-\beta)Ve^{-rt} - C\right)}{(1-e^{-rt})}$$

- Van Kooten et al. (1995)
- Subsidy for carbon withdrawal from atmosphere, tax for emission into atmosphere.

• Rental:
$$Max_t \frac{\left(PVe^{-rt} + \int_0^T R^C \alpha Ve^{-rn} dn + P^C \beta Ve^{-rt} - C\right)}{(1 - e^{-rt})}$$

- R^c = P^c(1-exp(-r+n))
- Sohngen and Mendelsohn (2003)
- Rental subsidy for holding carbon out of atmosphere and payment for permanent pickling.

Difference between tax/subsidy v rental is distributional.

Tons CO₂ Per hectare Same efficiency outcomes (e.g., same rotation age for a given timber and carbon price, but

A big difference in the property right

Paying for annual increment Paying for product storage Renting Stock

t=0 t=15 t=30

Economic evaluation – carbon rental

• Augmented Faustmann:
$$Max_t \frac{\left(PVe^{-rt} + \int_0^T R^C \alpha Ve^{-rn} dn + P^C \beta Ve^{-rt} - C\right)}{(1 - e^{-rt})}$$

$$\dot{P}V + P\dot{V} + R^{C}\alpha V + (\dot{P}c)\beta V + P^{C}\beta\dot{V} =$$

$$rPV + rP^{C}\beta V + r\left(\frac{\left(PVe^{-rt} + \int_{0}^{T} R^{C}\alpha Ve^{-rn}dn + P^{C}\beta Ve^{-rt} - C\right)}{(1 - e^{-rt})}\right)$$

Would we ever reduce harvests for carbon?

- Use database for the Global Timber Model to assess marginal benefits and marginal costs of waiting to harvest.
 - Contains data on 244 forest and management types globally, ranging from intensively managed plantations to inaccessible types in all regions
- Use initial prices, costs and yields, unadjusted for climate change.
- Data from Daigneault et al. (2023)

Evaluate the MB/MC of harvesting

$$\dot{P}V + P\dot{V} + R^{C}\alpha V + (\dot{P}c)\beta V + P^{C}\beta\dot{V} =$$

$$rPV + rP^{C}\beta V + r\left(\frac{\left(PVe^{-rt} + \int_{0}^{T} R^{C}\alpha Ve^{-rn}dn + P^{C}\beta Ve^{-rt} - C\right)}{(1 - e^{-rt})}\right)$$

Forest price changes = 0.4% per year Carbon price changes 3%/yr Initial carbon price = \$15 and \$100

Do the marginal benefits of waiting ever get big enough to suggest not harvesting? Carbon price = \$15/t CO2

	MB>MC (Hold)	MB <mc (harvest)<="" th=""></mc>
US	49	26
CHINA	6	4
BRAZIL	9	1
CANADA	18	18
RUSSIA	12	2
EU ANNEX I	3	6
EU NON ANNEX I	4	0
SOUTH ASIA	5	0
CENTRAL AMERICA	12	0
REST OF SOUTH AMERICA	10	0
SUB-SAHARAN AFRICA	8	0
SE ASIA	6	4
OCEANIA	8	2
JAPAN	2	0
AFRICA MIDDLE EAST	8	0
EAST ASIA	12	9

Do the marginal benefits of waiting ever get big enough to suggest not harvesting? Carbon price = \$100/t CO2

	MB>MC (Hold)	MB <mc (harvest)<="" th=""></mc>
US	52	23
CHINA	10	0
BRAZIL	10	0
CANADA	36	0
RUSSIA	14	0
EU ANNEX I	9	0
EU NON ANNEX I	4	0
SOUTH ASIA	5	0
CENTRAL AMERICA	12	0
REST OF SOUTH AMERICA	10	0
SUB-SAHARAN AFRICA	8	0
SE ASIA	10	0
OCEANIA	10	0
JAPAN	2	0
AFRICA MIDDLE EAST	8	0
EAST ASIA	21	0

Global Timber Model

- Global market
 - Global demand for sawtimber and pulpwood with quality adjustment factors to adjust value of wood in each location.
 - Implies trade of wood products is frictionless
 - Demand elasticity = -1.0
 - Income elasticity ~ 0.9
- Land rental functions for each land class, with land supply elasticity = 0.3, so a 10% increase in land rents will increase land area in the forest type by 3%.

Dynamic analysis - Global Timber Model

- Carbon managed by renting carbon in forest stocks and paying for carbon stored permanently in wood product pools.
- Consider \$20 + 3%, and \$100 +3%.
- Assess what happens to wood products, forest management, and carbon storage.

Dynamic Analysis

With carbon pricing → Higher prices Smaller annual harvest globally Carbon storage includes: Aboveground C Slash C Soil Organic C Market C

Effect on Harvest Volume

	\$20 +3%		\$100+3%	
	2020	2050	2020	2050
US	0.1%	14.2%	-5.1%	24.1%
CHINA	-4.2%	-24.5%	-7.8%	-56.8%
BRAZIL	-14.9%	-2.0%	-57.1%	16.6%
CANADA	0.3%	-0.3%	1.5%	-1.7%
RUSSIA	-8.1%	2.7%	-42.2%	-21.4%
EU ANNEX I	-7.8%	5.9%	-7.5%	12.8%
EU NON ANNEX I	0.0%	-1.1%	0.0%	20.6%
SOUTH ASIA	-10.4%	-4.4%	-87.1%	-65.8%
CENTRAL AMERICA	-39.5%	-20.3%	-78.0%	-23.6%
REST OF SOUTH AM.	-32.9%	-47.3%	-82.4%	-40.4%
SUB-SAHARAN AFRICA	-75.2%	-61.2%	-76.3%	-92.2%
SE ASIA	-18.0%	-41.3%	-72.7%	-52.0%
OCEANIA	-0.9%	11.6%	-4.9%	-46.5%
JAPAN	-26.5 %	-5.1%	-83.1%	-56.4%
AFME	-44.7%	-40.6%	-73.0%	-68.5%
E ASIA	0.0%	-15.5%	-29.6%	-28.8%
Total	-10.2%	-6.8%	-28.7%	-13.2%

Carbon fertilization

- US effects (Davis et al., 2022)
 - 1% increase in lifetime CO_2 leads to 1.3% increase in wood volume
 - Between 1985 and 2015

Change in	25 yrs	40 yrs	75 yrs
Lifetime carbon	13%	12%	8%
Volume change	17%	15%	11%

- By 2050, expect another 14 17% increase in CO2 concentration, with attendant increase in volume
- Canada effects (Oh et al., 2024)
 - 1% increase in lifetime CO₂ leads to 0.9% increase in wood volume

Carbon fertilization on young stands

 Carbon fertilization effect is proportionally the same for natural and managed stands, but potentially has its largest effect on managed short-rotation stands.

	Volume 1970	Volume 2020	Gain
Natural Stand (even-aged 1 – 100)	147.5	170.1	22.7
Plantation (even aged 1- 30)	112.0	140.3	28.2

Effects of CO2 fertilization in projections with GTM

Can carbon prices compensate?

